Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Plant Physiol ; 191(1): 142-160, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36250895

RESUMO

The Plant-Conserved Region (P-CR) and the Class-Specific Region (CSR) are two plant-unique sequences in the catalytic core of cellulose synthases (CESAs) for which specific functions have not been established. Here, we used site-directed mutagenesis to replace amino acids and motifs within these sequences predicted to be essential for assembly and function of CESAs. We developed an in vivo method to determine the ability of mutated CesA1 transgenes to complement an Arabidopsis (Arabidopsis thaliana) temperature-sensitive root-swelling1 (rsw1) mutant. Replacement of a Cys residue in the CSR, which blocks dimerization in vitro, rendered the AtCesA1 transgene unable to complement the rsw1 mutation. Examination of the CSR sequences from 33 diverse angiosperm species showed domains of high-sequence conservation in a class-specific manner but with variation in the degrees of disorder, indicating a nonredundant role of the CSR structures in different CESA isoform classes. The Cys residue essential for dimerization was not always located in domains of intrinsic disorder. Expression of AtCesA1 transgene constructs, in which Pro417 and Arg453 were substituted for Ala or Lys in the coiled-coil of the P-CR, were also unable to complement the rsw1 mutation. Despite an expected role for Arg457 in trimerization of CESA proteins, AtCesA1 transgenes with Arg457Ala mutations were able to fully restore the wild-type phenotype in rsw1. Our data support that Cys662 within the CSR and Pro417 and Arg453 within the P-CR of Arabidopsis CESA1 are essential residues for functional synthase complex formation, but our data do not support a specific role for Arg457 in trimerization in native CESA complexes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Aminoácidos Essenciais/genética , Aminoácidos Essenciais/metabolismo , Mutação , Celulose/metabolismo , Glucosiltransferases/metabolismo
2.
Mol Plant ; 16(2): 322-336, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36540024

RESUMO

Grain essential amino acid (EAA) levels contribute to rice nutritional quality. However, the molecular mechanisms underlying EAA accumulation and natural variation in rice grains remain unclear. Here we report the identification of a previously unrecognized auxin influx carrier subfamily gene, OsAUX5, which encodes an amino acid transporter that functions in uptake of multiple amino acids. We identified an elite haplotype of Pro::OsAUX5Hap2 that enhances grain EAA accumulation without an apparent negative effect on agronomic traits. Natural variations of OsAUX5 occur in the cis elements of its promoter, which are differentially activated because of the different binding affinity between OsWRKY78 and the W-box, contributing to grain EAA variation among rice varieties. The two distinct haplotypes were shown to have originated from different Oryza rufipogon progenitors, which contributed to the divergence between japonica and indica. Introduction of the indica-type Pro::OsAUX5Hap2 genotype into japonica could significantly increase EAA levels, indicating that indica-type Pro::OsAUX5Hap2 can be utilized to increase grain EAAs of japonica varieties. Collectively, our study uncovers an WRKY78-OsAUX5-based regulatory mechanism controlling grain EAA accumulation and provides a potential target for breeding EAA-rich rice.


Assuntos
Oryza , Oryza/genética , Melhoramento Vegetal , Grão Comestível/genética , Genótipo , Aminoácidos Essenciais/genética , Aminoácidos Essenciais/metabolismo
3.
Microbiol Spectr ; 10(5): e0277922, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36094208

RESUMO

Many insects harbor bacterial endosymbionts that supply essential nutrients and enable their hosts to thrive on a nutritionally unbalanced diet. Comparisons of the genomes of endosymbionts and their insect hosts have revealed multiple cases of mutually-dependent metabolic pathways that require enzymes encoded in 2 genomes. Complementation of metabolic reactions at the pathway level has been described for hosts feeding on unbalanced diets, such as plant sap. However, the level of collaboration between symbionts and hosts that feed on more variable diets is largely unknown. In this study, we investigated amino acid and vitamin/cofactor biosynthetic pathways in Blattodea, which comprises cockroaches and termites, and their obligate endosymbiont Blattabacterium cuenoti (hereafter Blattabacterium). In contrast to other obligate symbiotic systems, we found no clear evidence of "collaborative pathways" for amino acid biosynthesis in the genomes of these taxa, with the exception of collaborative arginine biosynthesis in 2 taxa, Cryptocercus punctulatus and Mastotermes darwiniensis. Nevertheless, we found that several gaps specific to Blattabacterium in the folate biosynthetic pathway are likely to be complemented by their host. Comparisons with other insects revealed that, with the exception of the arginine biosynthetic pathway, collaborative pathways for essential amino acids are only observed in phloem-sap feeders. These results suggest that the host diet is an important driving factor of metabolic pathway evolution in obligate symbiotic systems. IMPORTANCE The long-term coevolution between insects and their obligate endosymbionts is accompanied by increasing levels of genome integration, sometimes to the point that metabolic pathways require enzymes encoded in two genomes, which we refer to as "collaborative pathways". To date, collaborative pathways have only been reported from sap-feeding insects. Here, we examined metabolic interactions between cockroaches, a group of detritivorous insects, and their obligate endosymbiont, Blattabacterium, and only found evidence of collaborative pathways for arginine biosynthesis. The rarity of collaborative pathways in cockroaches and Blattabacterium contrasts with their prevalence in insect hosts feeding on phloem-sap. Our results suggest that host diet is a factor affecting metabolic integration in obligate symbiotic systems.


Assuntos
Baratas , Animais , Baratas/microbiologia , Genoma Bacteriano , Filogenia , Simbiose , Insetos , Bactérias/genética , Redes e Vias Metabólicas/genética , Aminoácidos , Aminoácidos Essenciais/genética , Arginina/genética , Ácido Fólico , Vitaminas
4.
Transgenic Res ; 30(2): 207-220, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33583006

RESUMO

Ruminants and humans are unable to synthesize essential amino acids (EAAs) and conditionally essential amino acids (CEAAs) under normal conditions and need to acquire them from plant sources. Maize plays, as a major crop, a central role in global food security. However, maize is deficient in several EAAs and CEAAs. Genetic engineering has been successfully used to enrich the EAA content of maize to some extent, including the content of Lys, Trp, and Met. However, research on other EAAs is lacking. Genetic engineering provides several viable approaches for increasing the EAA content in maize, including transformation of a single gene, transformation of multiple genes in a single cassette, overexpression of putative amino acid transporters, engineering the amino acid biosynthesis pathway including silencing of feedback inhibition enzymes, and overexpression of major enzymes in this pathway. These challenging processes require a deep understanding of the biosynthetic and metabolic pathways of individual amino acids, and the interaction of individual amino acids with other metabolic pathways.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos Essenciais/biossíntese , Vias Biossintéticas , Engenharia Genética/métodos , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Zea mays/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Aminoácidos Essenciais/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Zea mays/genética
5.
Mol Ecol ; 29(4): 848-858, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31945243

RESUMO

A defining feature of the nutritional ecology of plant sap-feeding insects is that the dietary deficit of essential amino acids (EAAs) in plant sap is supplemented by EAA-provisioning microbial symbionts in the insect. Here, we demonstrated substantial variation in the nutritional phenotype of 208 genotypes of the pea aphid Acyrthosiphon pisum collected from a natural population. Specifically, the genotypes varied in performance (larval growth rates) on four test diets lacking the EAAs arginine, histidine and methionine or aromatic EAAs (phenylalanine and tryptophan), relative to the diet containing all EAAs. These data indicate that EAA supply from the symbiotic bacteria Buchnera can meet total aphid nutritional demand for only a subset of the EAA/aphid genotype combinations. We then correlated single nucleotide polymorphisms (SNPs) identified in the aphid and Buchnera genomes by reduced genome sequencing against aphid performance for each EAA deletion diet. This yielded significant associations between performance on the histidine-free diet and Buchnera SNPs, including metabolism genes predicted to influence histidine biosynthesis. Aphid genetic correlates of performance were obtained for all four deletion diets, with associations on the arginine-free diet and aromatic-free diets dominated by genes functioning in the regulation of metabolic and cellular processes. The specific aphid genes associated with performance on different EAA deletion diets are largely nonoverlapping, indicating some independence in the regulatory circuits determining aphid phenotype for the different EAAs. This study demonstrates how variation in the phenotype of associations collected from natural populations can be applied to elucidate the genetic basis of ecologically important traits in systems intractable to traditional forward/reverse genetic techniques.


Assuntos
Afídeos/genética , Buchnera/genética , Evolução Molecular , Simbiose/genética , Aminoácidos Essenciais/genética , Animais , Ecologia , Genoma Bacteriano/genética , Genoma de Inseto/genética , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
6.
Int J Mol Sci ; 18(6)2017 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-28629176

RESUMO

To feed the world's growing population, increasing the yield of crops is not the only important factor, improving crop quality is also important, and it presents a significant challenge. Among the important crops, horticultural crops (particularly fruits and vegetables) provide numerous health compounds, such as vitamins, antioxidants, and amino acids. Essential amino acids are those that cannot be produced by the organism and, therefore, must be obtained from diet, particularly from meat, eggs, and milk, as well as a variety of plants. Extensive efforts have been devoted to increasing the levels of essential amino acids in plants. Yet, these efforts have been met with very little success due to the limited genetic resources for plant breeding and because high essential amino acid content is generally accompanied by limited plant growth. With a deep understanding of the biosynthetic pathways of essential amino acids and their interactions with the regulatory networks in plants, it should be possible to use genetic engineering to improve the essential amino acid content of horticultural plants, rendering these plants more nutritionally favorable crops. In the present report, we describe the recent advances in the enhancement of essential amino acids in horticultural plants and possible future directions towards their bio-fortification.


Assuntos
Aminoácidos Essenciais/biossíntese , Aminoácidos Essenciais/genética , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Vias Biossintéticas/genética , Cruzamento , Produtos Agrícolas/enzimologia , Alimentos Fortificados , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Engenharia Genética , Valor Nutritivo , Desenvolvimento Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
8.
Trends Genet ; 32(8): 459-469, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27235112

RESUMO

The adoption of recombinant inbred line and introgression line populations, as well as the study of association mapping panels, has greatly accelerated our ability to identify the genes underlying plant phenotypic variance. In tandem, the development of metabolomics approaches has greatly enhanced our ability to comprehensively define cellular chemical composition. As a consequence, breeding for chemical composition is being extended beyond our traditional targets of oil and protein to include components such as essential amino acids, vitamins, and antioxidant secondary metabolites with considerable purported consequences for human health. Here, we review the above-mentioned developments paying particular attention to the genetic architecture of metabolic traits as well as updating the perspective for utilizing metabolomics in maize improvement.


Assuntos
Aminoácidos Essenciais/metabolismo , Metabolômica , Proteínas de Plantas/metabolismo , Zea mays/genética , Aminoácidos Essenciais/genética , Cruzamento , Mapeamento Cromossômico , Genótipo , Fenótipo , Óleos de Plantas/metabolismo , Proteínas de Plantas/genética , Locos de Características Quantitativas/genética , Zea mays/química , Zea mays/metabolismo
9.
Amino Acids ; 46(9): 2177-88, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24893662

RESUMO

Threonine is a nutritionally essential amino acid (EAA) for the growth and development of humans and other nonruminant animals and must be provided in diets to sustain life. The aim of this study was to synthesize threonine in mammalian cells through transgenic techniques. To achieve this goal, we combined the genes involved in bacterial threonine biosynthesis pathways into a single open reading frame separated by self-cleaving peptides (2A) and then linked it into a transposon system (piggyBac). The plasmids pEF1a-IRES-GFP-E2F-his and pEF1a-IRES-GFP-M2F-his expressed Escherichia coli homoserine kinase and threonine synthase efficiently in mouse cells and enabled cells to synthesize threonine from homoserine. This biosynthetic pathway occurred with a low level of efficiency in transgenic mice. Three transgenic mice were identified by Southern blot from 72 newborn mice, raising the possibility that a high level of expression of these genes in mouse embryos might be lethal. The results indicated that it is feasible to synthesize threonine in animal cells using genetic engineering technology. Further work is required to improve the efficiency of this method for introducing genes into mammals. We propose that the transgenic technology provides a promising means to enhance the synthesis of nutritionally EAAs in farm animals and to eliminate or reduce supplementation of these nutrients in diets for livestock, poultry and fish.


Assuntos
Aminoácidos Essenciais , Regulação Enzimológica da Expressão Gênica , Aminoácidos Essenciais/biossíntese , Aminoácidos Essenciais/genética , Animais , Escherichia coli/enzimologia , Escherichia coli/genética , Camundongos , Camundongos Transgênicos , Células NIH 3T3
10.
PLoS One ; 8(3): e57531, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23555562

RESUMO

Cottonseeds are rich in various essential amino acids. However, the inheritance of them at molecular level are still not defined across various genetic systems. In the present study, using a newly developed mapping model that can analyze the embryo and maternal main effects as well as QTL × environment interaction effects on quantitative quality trait loci (QTLs) in cottonseeds, a study on QTL located in the tetraploid embryo and tetraploid maternal plant genomes for essential amino acid contents in cottonseeds under different environments was carried out, using the immortal F2 (IF2) populations from a set of 188 recombinant inbred lines derived from an intraspecific hybrid cross of two upland cotton germplasms HS46 and MARKCBUCAG8US-1-88 as experimental materials. The results showed a total of 35 QTLs associated with these quality traits in cottonseeds. Nineteen QTLs were subsequently mapped on chromosome 5, 6 and 8 in sub-A genome and chromosome 15, 18, 22 and 23 in sub-D genome. Eighteen QTLs were also found having QTL × environment (QE) interaction effects. The genetic main effects from QTLs located on chromosomes in the embryo and maternal plant genomes and their QE effects in different environments were all important for these essential amino acids in cottonseeds. The results suggested that the influence of environmental factors on the expression of some QTLs located in different genetic systems should be considered when improving for these amino acids. This study can serve as the foundation for the improvement of these essential amino acids in cottonseeds.


Assuntos
Aminoácidos Essenciais , Interação Gene-Ambiente , Gossypium , Plantas Geneticamente Modificadas , Locos de Características Quantitativas , Aminoácidos Essenciais/genética , Aminoácidos Essenciais/metabolismo , Gossypium/genética , Gossypium/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Sementes/genética , Sementes/metabolismo
11.
Biotechnol Adv ; 31(1): 50-7, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22343216

RESUMO

Micronutrient malnutrition is widespread, especially in poor populations across the globe where daily caloric intake is confined mainly to staple cereals. Rice, which is a staple food for over half of the world's population, is low in bioavailable micronutrients required for the daily diet. Improvements of the plant-based diets are therefore critical and of high economic value in order to achieve a healthy nutrition of a large segment of the human population. Rice grain biofortification has emerged as a strategic priority for alleviation of micronutrient malnutrition. Nutritional enhancement of crops through conventional breeding is often limited by the low genetic variability for required dietary micronutrient levels. In this case, biotechnology strategies offer effective and efficient perspectives. In this review, we discuss genetic engineering approaches that have been successful in the nutritional enhancement of rice endosperm. These advancements will make substantial contributions to crop improvement and human nutrition. Their practical application, however, also demands visionary changes in regulatory policies and a broader consumer acceptance.


Assuntos
Micronutrientes , Oryza/química , Oryza/genética , Plantas Geneticamente Modificadas , Aminoácidos Essenciais/genética , Disponibilidade Biológica , Biotecnologia/métodos , Cruzamento , Produtos Agrícolas/genética , Feminino , Ácido Fólico , Alimentos Fortificados , Humanos , Ferro/farmacocinética , Desnutrição/epidemiologia , Desnutrição/prevenção & controle , Gravidez , Sementes/genética , Sementes/metabolismo
12.
Int J Food Sci Nutr ; 64(3): 300-11, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23113611

RESUMO

Cellular growth repression can mediate positive health outcomes by improving resistance while delaying the manifestation and decelerating the progression, of chronic diseases. Sensing systems that respond to amino acid limitation are, the general control non-derepressible kinase 2 (GCN2), the mammalian target of rapamycin (mTOR; namely mammalian target of rapamycin complex 1), the extracellular signal-regulated kinase (ERK)-mitogen-activated protein kinase pathway, the adenosine 5-mono-phosphate-activated protein kinase system. GCN2 particularly, under limiting essential amino acid conditions, activates the integrated stress response (ISR) causing selective up- /down-regulation of pro-survival/pro-apoptotic genes, respectively, rendering beneficial adaptation responses to amino acid limitation. This review attempts to bridge the link between molecular events and mechanisms observed at the cellular level with the potential health benefits possibly achieved at the whole organism level. The article describes mechanisms of essential amino acid sensing and provides a discussion on relevant research that suggests a potential role of essential amino acid sensing for promoting health.


Assuntos
Aminoácidos Essenciais/deficiência , Apoptose , Sobrevivência Celular , Doença Crônica , Regulação da Expressão Gênica , Proteínas Quinases/metabolismo , Aminoácidos Essenciais/genética , Animais , Apoptose/genética , Sobrevivência Celular/genética , Promoção da Saúde , Humanos , Transdução de Sinais
13.
Biochem Biophys Res Commun ; 416(1-2): 165-71, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-22100812

RESUMO

In order to identify amino acid residues crucial for the enzymatic activity of Δ(8)-sphingolipid desaturases, a sequence comparison was performed among Δ(8)-sphingolipid desaturases and Δ(6)-fatty acid desaturases from various plants. In addition to the known conserved cytb(5) (cytochrome b(5)) HPGG motif and three conserved histidine boxes, they share additional 15 completely conserved residues. A series of site-directed mutants were generated using our previously isolated Δ(8)-sphingolipid desaturase gene from Brassica rapa to evaluate the importance of these residues to the enzyme function. The mutants were functionally characterized by heterologous expression in yeast, allowing the identification of the products of the enzymes. The results revealed that residues H63, N203, D208, D210, and G368 were obligatorily required for the enzymatic activity, and substitution of the residues F59, W190, W345, L369 and Q372 markedly decreased the enzyme activity. Among them, replacement of the residues W190, L369 and Q372 also has significant influence on the ratio of the two enzyme products. Information obtained in this work provides the molecular basis for the Δ(8)-sphingolipid desaturase activity and aids in our understanding of the structure-function relationships of the membrane-bound desaturases.


Assuntos
Aminoácidos Essenciais/química , Brassica rapa/enzimologia , Oxirredutases/química , Proteínas de Plantas/química , Sequência de Aminoácidos , Aminoácidos Essenciais/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oxirredutases/classificação , Oxirredutases/genética , Linhagem , Proteínas de Plantas/genética , Conformação Proteica
14.
Mol Microbiol ; 81(5): 1271-85, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21797941

RESUMO

Aphids, important agricultural pests, can grow and reproduce thanks to their intimate symbiosis with the γ-proteobacterium Buchnera aphidicola that furnishes them with essential amino acids lacking in their phloem sap diet. To study how B. aphidicola, with its reduced genome containing very few transcriptional regulators, responds to variations in the metabolic requirements of its host, we concentrated on the leucine metabolic pathway. We show that leucine is a limiting factor for aphid growth and it displays a stimulatory feeding effect. Our metabolic analyses demonstrate that symbiotic aphids are able to respond to leucine starvation or excess by modulating the neosynthesis of this amino acid. At a molecular level, this response involves an early important transcriptional regulation (after 12 h of treatment) followed by a moderate change in the pLeu plasmid copy number. Both responses are no longer apparent after 7 days of treatment. These experimental data are discussed in the light of a re-annotation of the pLeu plasmid regulatory elements. Taken together, our data show that the response of B. aphidicola to the leucine demand of its host is multimodal and dynamically regulated, providing new insights concerning the genetic regulation capabilities of this bacterium in relation to its symbiotic functions.


Assuntos
Afídeos/metabolismo , Buchnera/metabolismo , Aminoácidos Essenciais/genética , Aminoácidos Essenciais/metabolismo , Animais , Afídeos/crescimento & desenvolvimento , Afídeos/microbiologia , Buchnera/genética , Produtos Agrícolas , Variações do Número de Cópias de DNA , Genoma Bacteriano , Leucina/biossíntese , Redes e Vias Metabólicas/genética , Plasmídeos , Simbiose/genética , Simbiose/fisiologia
15.
J Genet ; 90(1): 67-74, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21677390

RESUMO

Genetic correlations of nutrient quality traits including lysine, methionine, leucine, isoleucine, phenylalanine, valine and threonine contents in rapeseed meal were analysed by the genetic model for quantitative traits of diploid plants using a diallel design with nine parents of Brassica napus L. These results indicated that the genetic correlations of embryo, cytoplasm and/or maternal plant havemade different contribution to total genetic correlations of most pairwise nutrient quality traits. The genetic correlations among the amino acids in rapeseed meal were simultaneously controlled by genetic main correlations and genotype x environment (GE) interaction correlations, especially for the maternal dominance correlations. Most components of genetic main correlations and GE interaction correlations for the pairwise traits studied were significantly positive. Some of the pairwise traits had negative genetic correlations, especially between valine and other amino acid contents. Indirect selection for improving the quality traits of rapeseed meal could be expected in rape breeding according to the magnitude and direction of genetic correlation components.


Assuntos
Aminoácidos Essenciais/análise , Aminoácidos Essenciais/genética , Brassica napus/química , Brassica napus/genética , Citoplasma/química , Citoplasma/genética , Diploide , Genótipo , Modelos Genéticos , Característica Quantitativa Herdável , Estatística como Assunto
16.
Proc Natl Acad Sci U S A ; 108(7): 2849-54, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21282658

RESUMO

The evolution of intimate symbiosis requires the coordination of gene expression and content between the distinct partner genomes; this coordination allows the fusion of capabilities of each organism into a single integrated metabolism. In aphids, the 10 essential amino acids are scarce in the phloem sap diet and are supplied by the obligate bacterial endosymbiont (Buchnera), which lives inside specialized cells called bacteriocytes. Although Buchnera's genome encodes most genes for essential amino acid biosynthesis, several genes in essential amino acid pathways are missing, as are most genes for production of nonessential amino acids. Additionally, it is unresolved whether the supply of nitrogen for amino acid biosynthesis is supplemented by recycling of waste ammonia. We compared pea aphid gene expression between bacteriocytes and other body tissues using RNA sequencing and pathway analysis and exploiting the genome sequences available for both partners. We found that 26 genes underlying amino acid biosynthesis were up-regulated in bacteriocytes. Seven of these up-regulated genes fill the gaps of Buchnera's essential amino acid pathways. In addition, genes underlying five nonessential amino acid pathways lost from Buchnera are up-regulated in bacteriocytes. Finally, our results reveal that two genes, glutamine synthetase and glutamate synthase, which potentially work together in the incorporation of ammonium nitrogen into glutamate (GOGAT) cycle to assimilate ammonia into glutamate, are up-regulated in bacteriocytes. Thus, host gene expression and symbiont capabilities are closely integrated within bacteriocytes, which function as specialized organs of amino acid production. Furthermore, the GOGAT cycle may be a key source of nitrogen fueling the integrated amino acid metabolism of the aphid-Buchnera partnership.


Assuntos
Aminoácidos Essenciais/biossíntese , Afídeos/genética , Afídeos/microbiologia , Buchnera/metabolismo , Evolução Molecular , Regulação da Expressão Gênica/genética , Simbiose , Aminoácidos Essenciais/genética , Animais , Afídeos/metabolismo , Sequência de Bases , Glutamato Sintase/metabolismo , Glutamato-Amônia Ligase/metabolismo , Dados de Sequência Molecular , Compostos de Amônio Quaternário/metabolismo , Análise de Sequência de RNA , Especificidade da Espécie
17.
Mol Microbiol ; 74(3): 619-33, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19775245

RESUMO

The Yersinia enterocolitica phage-shock-protein (Psp) stress response system is activated by mislocalized outer-membrane secretin components of protein export systems and is essential for virulence. The cytoplasmic membrane proteins PspB and PspC were proposed to be dual function components of the system, acting both as positive regulators of psp gene expression and to support survival during secretin-induced stress. In this study we have uncoupled the regulatory and physiological functions of PspBC and discovered unexpected new roles, functional domains and essential amino acids. First, we showed that PspB controls PspC concentration by both pre- and post-transcriptional mechanisms. We then screened for PspBC mutants with altered transcriptional regulatory function. Unexpectedly, we identified PspB and PspC mutants that activated psp gene expression in the absence of secretin-induced stress. Together with a subsequent truncation analysis, this revealed that the PspC cytoplasmic domain plays an unforeseen role in negatively regulating psp gene expression. Conversely, mutations within the PspC periplasmic domain abolished its ability to activate psp gene expression. Significantly, PspC mutants unable to activate psp gene expression retained their ability to support survival during secretin-induced stress. These data provide compelling support for the proposal that these two functions are independent.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/fisiologia , Proteínas de Membrana/química , Proteínas de Membrana/fisiologia , Fatores de Transcrição/química , Fatores de Transcrição/fisiologia , Yersinia enterocolitica/genética , Aminoácidos Essenciais/genética , Aminoácidos Essenciais/metabolismo , Anticorpos Antibacterianos/genética , Anticorpos Antibacterianos/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/genética , ATPases Bacterianas Próton-Translocadoras/genética , ATPases Bacterianas Próton-Translocadoras/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo , Elementos de DNA Transponíveis , DNA Bacteriano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Teste de Complementação Genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Secretina/genética , Secretina/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética , Virulência/genética , Yersinia enterocolitica/metabolismo , Yersinia enterocolitica/patogenicidade
18.
Recent Pat DNA Gene Seq ; 3(3): 219-25, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19673700

RESUMO

Improving essential amino acids or protein content, along with other phytonutrients in the food crops, will affect a great portion of the world population, especially in developing countries where rice grain is the main source of protein. Malnutrition, including deficiencies in protein/energy, iron/zinc, vitamin A, and iodine, causes a total 24,000 deaths per day worldwide. The problem is severe where rice is the major staple food. Protein deficiency involves both the quantity (amount) and quality (the content in essential amino acids) of the dietary protein. Various interventions, such as distribution, fortification, dietary diversification, and measures against infectious diseases, have been applied to reduce deficiency disorders. The problem, however, remains unsolved. Developing genetically novel lines with elevated content of essential amino acids together with other health benefit components becomes more feasible for the enhancement of breeding techniques, genomics, molecular manipulations, and genetic engineering. Advancement in basic genetic and genetic engineering has resulted in successful enrichment of some essential amino acids, such as lysine (Lys), tryptophan (Trp), and methionine (Met). Successful genetic enhancement has been largely restricted to the maize crop through enrichment of grain Lys and to some extends Trp. Since rice is the main source of calories and protein intake for billions of people, enhancing essential amino acids in rice represents a tremendous challenge. This paper will discuss and review the current status in basic genetics, molecular genetics, and genetic engineering associated with the enhancement of amino acids and other health benefit components in major grain crop improvement. Patents and future efforts associated with enhancing nutritional quality of the grain will also be reviewed as a concerted effort to solve the malnutrition problem and improve the quality of life worldwide.


Assuntos
Aminoácidos Essenciais/metabolismo , Produtos Agrícolas/química , Grão Comestível/química , Alimento Funcional , Aminoácidos Essenciais/química , Aminoácidos Essenciais/genética , Animais , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo , Humanos , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
19.
Plant Cell Rep ; 28(7): 1085-94, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19466426

RESUMO

An amaranth (Amaranthus hypochondriacus) albumin gene, encoding the 35-kDa AmA1 protein of the seed, with a high content of essential amino acids, was used in the biolistic transformation of bread wheat (Triticum aestivum L.) variety Cadenza. The transformation cassette carried the ama1 gene under the control of a powerful wheat endosperm-specific promoter (1Bx17 HMW-GS). Southern-blot analysis of T(1) lines confirmed the integration of the foreign gene, while RT-PCR and Western-blot analyses of the samples confirmed the transcription and translation of the transgene. The effects of the extra albumin protein on the properties of flour, produced from bulked T(2) seeds, were calculated using total protein and essential amino acid content analysis, polymeric/monomeric protein and HMW/LMW glutenin subunit ratio measurements. The results indicated that not only can essential amino acid content be increased, but some parameters associated with functional quality may also be improved because of the expression of the AmA1 protein.


Assuntos
Albuminas 2S de Plantas/metabolismo , Amaranthus/genética , Triticum/química , Triticum/genética , Albuminas 2S de Plantas/genética , Aminoácidos Essenciais/genética , DNA de Plantas/genética , Farinha/análise , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Plantas Geneticamente Modificadas/genética , Sementes/química , Sementes/genética , Transformação Genética , Transgenes
20.
Genet Mol Res ; 7(3): 839-52, 2008 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-18949703

RESUMO

Nutrigenomics studies the effects of nutrients on the genome, transcriptome and proteome of organisms, and here an evolutionary standpoint on this new discipline is presented. It is well known that metazoan organisms are unable to synthesize all amino acids necessary to produce their proteins and that these essential amino acids (EAA) must be acquired from the diet. Here, we tested the hypothesis that conserved regions such as protein domains (DM) have different essentiality indexes and use different sets of amino acids when compared to extra-domains (ED) and proteins without mapped domains (WD). We found that auxotrophic organisms have a tendency to use less EAAs in DM than do prototrophic ones. Looking into the amino acid usage of eukaryotic proteins downloaded from KEGG and COG, we showed that WD have a usage of amino acids closer to DM, which suggests that proteins without mapped domains behave as large domains. Using an ED index that shows the proportion of prevalent amino acids in ED, a differential usage of amino acids in domains versus extra-domains was demonstrated. Protein domains were shown to be enriched with a higher number of EAA, and it may be related to the fact that these amino acids had lost their biosynthetic pathways in metazoans during a great amino acid pathway deletion, followed by a nutritional constraint that may have happened close to the conquest of the terrestrial environment. Thus, the proportion of EAA outside domains could have decreased during evolution due to nutritional constraints.


Assuntos
Aminoácidos Essenciais/metabolismo , Células Eucarióticas/metabolismo , Nutrigenômica/métodos , Proteínas/metabolismo , Aminoácidos Essenciais/genética , Animais , Evolução Molecular , Estrutura Terciária de Proteína , Proteínas/química , Proteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...